Characterization of a gene cluster responsible for the biosynthesis of anticancer agent FK228 in Chromobacterium violaceum No. 968.
نویسندگان
چکیده
A gene cluster responsible for the biosynthesis of anticancer agent FK228 has been identified, cloned, and partially characterized in Chromobacterium violaceum no. 968. First, a genome-scanning approach was applied to identify three distinctive C. violaceum no. 968 genomic DNA clones that code for portions of nonribosomal peptide synthetase and polyketide synthase. Next, a gene replacement system developed originally for Pseudomonas aeruginosa was adapted to inactivate the genomic DNA-associated candidate natural product biosynthetic genes in vivo with high efficiency. Inactivation of a nonribosomal peptide synthetase-encoding gene completely abolished FK228 production in mutant strains. Subsequently, the entire FK228 biosynthetic gene cluster was cloned and sequenced. This gene cluster is predicted to encompass a 36.4-kb DNA region that includes 14 genes. The products of nine biosynthetic genes are proposed to constitute an unusual hybrid nonribosomal peptide synthetase-polyketide synthase-nonribosomal peptide synthetase assembly line including accessory activities for the biosynthesis of FK228. In particular, a putative flavin adenine dinucleotide-dependent pyridine nucleotide-disulfide oxidoreductase is proposed to catalyze disulfide bond formation between two sulfhydryl groups of cysteine residues as the final step in FK228 biosynthesis. Acquisition of the FK228 biosynthetic gene cluster and acclimation of an efficient genetic system should enable genetic engineering of the FK228 biosynthetic pathway in C. violaceum no. 968 for the generation of structural analogs as anticancer drug candidates.
منابع مشابه
New insights into the genetic organization of the FK228 biosynthetic gene cluster in Chromobacterium violaceum no. 968.
The biosynthetic gene cluster of FK228, an FDA-approved anticancer natural product, was identified and sequenced previously. The genetic organization of this gene cluster has now been delineated through systematic gene deletion and transcriptional analysis. As a result, the gene cluster is redefined to contain 12 genes: depA through depJ, depM, and a newly identified pathway regulatory gene, depR.
متن کاملThailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities.
Histone deacetylase (HDAC) inhibitors have emerged as a new class of anticancer drugs, with one synthetic compound, SAHA (vorinostat, Zolinza; 1), and one natural product, FK228 (depsipeptide, romidepsin, Istodax; 2), approved by FDA for clinical use. Our studies of FK228 biosynthesis in Chromobacterium violaceum no. 968 led to the identification of a cryptic biosynthetic gene cluster in the ge...
متن کاملReconstitution of the FK228 biosynthetic pathway reveals cross talk between modular polyketide synthases and fatty acid synthase.
Functional cross talk between fatty acid biosynthesis and secondary metabolism has been discovered in several cases in microorganisms; none of them, however, involves a modular biosynthetic enzyme. Previously, we reported a hybrid modular nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) pathway for the biosynthesis of FK228 anticancer depsipeptide in Chromobacterium violaceum st...
متن کاملThe structural basis of an NADP+-independent dithiol oxidase in FK228 biosynthesis
The disulfide bond is unusual in natural products and critical for thermal stability, cell permeability and bioactivity. DepH from Chromobacterium violaceum No. 968 is an FAD-dependent enzyme responsible for catalyzing the disulfide bond formation of FK228, an anticancer prodrug approved for the treatment of cutaneous T-cell lymphoma. Here we report the crystal structures of DepH and DepH compl...
متن کاملAn FAD-dependent pyridine nucleotide-disulfide oxidoreductase is involved in disulfide bond formation in FK228 anticancer depsipeptide.
Disulfide bonds are rare in bacterial natural products, and the mechanism of disulfide bond formation in those products is unknown. Here we characterize a gene and its product critical for a disulfide bond formation in FK228 anticancer depsipeptide in Chromobacterium violaceum. Deletion of depH drastically reduced FK228 production, whereas complementation of the depH-deletion mutant with a copy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 11 شماره
صفحات -
تاریخ انتشار 2007